Some generating functions for the Jacobi polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Functions of Jacobi Polynomials

Multiplicative renormalization method (MRM) for deriving generating functions of orthogonal polynomials is introduced by Asai–Kubo– Kuo. They and Namli gave complete lists of MRM-applicable measures for MRM-factors h(x) = ex and (1 − x)−κ. In this paper, MRM-factors h(x) for which the beta distribution B(p, q) over [0, 1] is MRM-applicable are determined. In other words, all generating function...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

On mixed trilateral generating functions of extended Jacobi polynomials

In this note we have obtained some novel result on mixed trilateral relations involving extended Jacobi polynomials by group theoretic method which inturn yields the corresponding results involving Hermite, Laguerre and Jacobi polynomials.

متن کامل

Probabilistic Derivation of Some Generating Functions for the Laguerre Polynomials

-A well-known generating function of the classical Laguerre polynomials was recently rederived probabillstically by Lee. In this paper, some other (presumably new) generating functions for the Laguerre polynomials are derived by means of probabillstic considerations. A direct (analytical) proof of each of these generating functions is also presented for the sake of completeness. © 1999 Elsevier...

متن کامل

Some Properties of Jacobi Polynomials

A main motivation for this paper is the search for the sufficient condition of the primality of an integer n in order that the congruence 1n−1 + 2n−1 + 3n−1 + · · · + (n− 1)n−1 ≡ −1 (mod n) holds. Some properties of Jacobi polynomials were investigated using certain Kummer results. Certain properties of Bernoulli polynomials as well as the Staudt–Clausen theorem for prime factors were also used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1992

ISSN: 0898-1221

DOI: 10.1016/0898-1221(92)90054-l